# L-system.frink

```// General description: // This code creates Lindenmayer rules via string manipulation // It can generate many of the examples from the Wikipedia page // discussing L-system fractals: http://en.wikipedia.org/wiki/L-system // // It does not support stochastic, context sensitive or parametric grammars // // It supports four special rules, and any number of variables in rules // f = move forward one unit // - = turn left one turn // + = turn right one turn // [ = save angle and position on a stack // ] = restore angle and position from the stack // The turn is how far each + or - in the final rule turns to either side turn = 90 degrees // This is how many times the rules get applied before we draw the result times = 5 // This is our starting string start = "++a" // These are the rules we apply rules = [["f","f"],["a","-bf+afa+fb-"], ["b","+af-bfb-fa+"]] // L-System rules pulled from Wikipedia // Dragon // 90 degrees, "fx", [["f","f"],["x","x+yf"],["y","fx-y"]] // TerDragon // 120 degrees, "f", [["f","f+f-f"]]  // Koch curve // 90 degrees, "f", [["f","f+f-f-f+f"]] // use "++f" as the start to flip it over // Sierpinski Triangle // 60 degrees, "bf", [["f","f"],["a","bf-af-b"],["b","af+bf+a"]] // Plant // 25 degrees, "--x", [["f","ff"],["x","f-[[x]+x]+f[+fx]-x"]] // Hilbert space filling curve // 90 degrees, "++a", [["f","f"],["a","-bf+afa+fb-"], ["b","+af-bfb-fa+"]] // Peano-Gosper curve // 60 degrees, "x", [["f","f"],["x","x+yf++yf-fx--fxfx-yf+"], ["y","-fx+yfyf++yf+fx--fx-y"]] // Lévy C curve // 45 degrees, "f", [["f","+f--f+"]] // This function will apply our rule once, using string substitutions based // on the rules we pass it // It does this in two passes to avoid problems with pairs of mutually referencing // rules such as in the Sierpinski Triangle // rules@k@1 could replace toString[k] and the entire second loop could // vanish without adversely affecting the Dragon or Koch curves. apply_rules[rules, current] := {    n = current    for k = 0 to length[rules]-1    {       rep = subst[rules@k@0,toString[k],"g"]       n =~ rep    }    for k = 0 to length[rules]-1    {       rep = subst[toString[k],rules@k@1,"g"]       n =~ rep    }    return n } // Here we will actually apply our rules the number of times specified current = start for i = 0 to times - 1 {    current = apply_rules[rules, current]    // Uncomment this line to see the string that is being produced at each stage    // println[current] } // Go ahead and plot the image now that we've worked it out g = new graphics g.antialiased[false]   // Comment this out for non-square rules. It looks better theta = 0 degrees x = 0 y = 0 stack = new array for i = 0 to length[current]-1 {    // This produces a nice sort of rainbow effect where most colors appear    // comment it out for a plain black fractal    // g.color[abs[sin[i degrees]],abs[cos[i*2 degrees]],abs[sin[i*4 degrees]]]    cur = substrLen[current,i,1]    if cur == "-"       theta = theta - (turn)    if cur == "+"       theta = theta + (turn)    if cur == "f" or cur == "F"    {       g.line[x,y,x + cos[theta],y + sin[theta]]       x = x + cos[theta]       y = y + sin[theta]    }    if cur == "["        stack.push[[theta,x,y]]    if cur == "]"        [theta,x,y] = stack.pop[] } g.show[] g.write["hilbert.png",512,undef] ```