BenfordsLaw.frink

View or download BenfordsLaw.frink in plain text format


// Calculate probability that the nth digit of a number (with certain
// properties, like measurements of physical quantities that range over
// several orders of magnitude) is the digit d.
//
// This is generally known as "Benford's Law".

prob[n,d] :=
{
   if n == 1
      return log[1+1/d]
   
   sum = 0
   for k = 10^(n-2) to 10^(n-1) - 1
      sum = sum + log[1 + 1/(10k + d)]
   return sum
}


View or download BenfordsLaw.frink in plain text format


This is a program written in the programming language Frink.
For more information, view the Frink Documentation or see More Sample Frink Programs.

Alan Eliasen was born 17646 days, 9 hours, 38 minutes ago.