BenfordsLaw.frink

View or download BenfordsLaw.frink in plain text format


// Calculate probability that the nth digit of a number (with certain
// properties, like measurements of physical quantities that range over
// several orders of magnitude) is the digit d.
//
// This is generally known as "Benford's Law".

prob[n,d] :=
{
   if n == 1
      return log[1+1/d]
   
   sum = 0
   for k = 10^(n-2) to 10^(n-1) - 1
      sum = sum + log[1 + 1/(10k + d)]
   return sum
}


View or download BenfordsLaw.frink in plain text format


This is a program written in the programming language Frink.
For more information, view the Frink Documentation or see More Sample Frink Programs.

Alan Eliasen was born 17591 days, 17 hours, 36 minutes ago.