ArnaultTest.frink

View or download ArnaultTest.frink in plain text format


/** This tests Frink's primality-testing routines against the numbers
   described in the paper: 

   Constructing Carmichael Numbers which are Strong Pseudoprimes to Several
   Bases, François Arnault, Journal of Symbolic Computation, Volume 20, Issue
   2, August 1995, Pages 151–161

   https://www.sciencedirect.com/science/article/pii/S0747717185710425
*/


p1 = 29674495668685510550154174642905332730771991799853043350995075531276838753171770199594238596428121188033664754218345562493168782883

p2 = (313 (p1-1) + 1)
p3 = (353 (p1-1) + 1)

n = p1 p2 p3

["p1 = $p1"]
println[]
println["p2 = $p2"]
println[]
println["p3 = $p3"]
println[]
println["n = p1 p2 p3 = $n"]
println[]
println[length[toString[n]]]


println[isPrime[n]]

b = 1
do
{
   b = nextPrime[b]
   if isStrongPseudoprime[n,b]
      println["Fooled by base $b"]
} while b < 4000



/*for b = 1 to 4000
   println["$b\t" + isStrongPseudoprime[n,b]]*/


View or download ArnaultTest.frink in plain text format


This is a program written in the programming language Frink.
For more information, view the Frink Documentation or see More Sample Frink Programs.

Alan Eliasen was born 17591 days, 17 hours, 41 minutes ago.