One of them that I found that's statistically interesting is a pretty long number that begins at digit 3,937,738,719 of pi. (Yeah, that's deep! It took almost 5 days to analyze that far down!) It has the highest chi-squared value of any run of digits I've found yet:

num=865330214442912672952375083884060588112612536031358125404766649786278723744864977035763584167144536711261123727528638717942814733707222707748004778849741292255046132654411463368254214875837883587572504874855929377428539779619203675546981690280375404302340310226658930699651761222106134406318830927552386953159585250586181220383518086649602754071573789084971690177941067493391397698585936678163068071328624450086963976125888087817503316442627203116800134331890857702773561778133459760876394827309306600583336779242119481014762577148148417779212712779381850012280639068151957645945573866117052569753700719611617070996227268075841047263649352531280146058166072819552335098438901677831252352550899810377420322908616639080947723215168535201967791757507898521243355354088556654144099333994650262463971908836666641696505607090037206042078392759121794518038908319522846346050259033234851378228591589172474734789532523972150604633682837222507421785529711996760882567428222662209208507341691611179307647565344046648796646167798942951062935945313921780478093811026885894354812957640515512710207802890043664861178112903338051739010631915910517477698701254203003249314556770104595269910509230520368336270941482236333936636413727412347517225754344786503576271481327766604481532586620807334378807747362939254409945034864379417754622425417370554433043637570827210061703913930752

It looks especially interesting in base 34, and I'm trying to display that structure somehow.

I've been trying to draw out the patterns of this number, but it's tricky. Can you graph it? What I'm trying to do is to plot the 2-dimensional region in the range:

x = 0 to 133

y = num to num+33

setting the pixels where:

(y/34 * 2^(-34x - (y mod 34))) mod 2 >= 1

If your graphing package can only handle graphing continuous regions instead of pixels, it would seem that you could graph the equivalent area where:

floor[(floor[y/34] 2^(-34 floor[x] - floor[y] mod 34)) mod 2] >= 1/2

Can you graph this? Any help would be greatly appreciated. Please send any notes to Alan Eliasen, eliasen@mindspring.com

Back to Frink documentation