primechain.frink

Download or view primechain.frink in plain text format


// Program to find the largest number that is made up of the concatenation of
// unique n-digit prime numbers.
// For example, for 2-digit primes, the sequence 31, 11, 17, 79 becomes
// the number 31179.

start = now[]

digits = eval[input["Enter length of chain: ", 3]]

// Find limits of range
smallest = 1

for i = 1 to digits-1
   smallest = smallest * 10 + 1

largest = smallest * 9

leading = new dict

n = smallest
// Find prime numbers in this range
while n <= largest
{
   if isPrime[n]
   {
      ns = "$n"
      lead = substringLen[ns, 0, digits-1]

      if leading@lead
         leading@lead.pushFirst[[ns, false]]
      else
         leading@lead = [[ns, false]]
   }

   n = nextPrime[n]
}

sortedList = new array
            
stack = new array

greatest = 0

for [num, list] reverse[sort[leading, byColumn[0]]]
{
   c = 0
   for c = 0 to length[list]-1
   {
      list@c@1 = true           // Mark used
      n = list@c@0
      greatest = test[n, digits, stack, leading, greatest]
      list@c@1 = false
   }
}

// Recursive function to test numbers.
test[n, digits, stack, leading, greatest] :=
{
   stack.push[n]
   if (length[stack] > greatest)
   {
      greatest = length[stack]
      println["$stack\t($greatest)"]
   }

   n = substringLen[n, 1, digits-1]

   for i = 0 to length[leading@n]-1
   {
      if leading@n@i@1 == false
      {
         leading@n@i@1 = true        // Mark used
         greatest = test[leading@n@i@0, digits, stack, leading, greatest]
         leading@n@i@1 = false
      }
   }
   stack.pop[]
   return greatest
}


Download or view primechain.frink in plain text format


This is a program written in the programming language Frink.
For more information, view the Frink Documentation or see More Sample Frink Programs.

Alan Eliasen was born 20117 days, 22 hours, 34 minutes ago.