# exactSeasons.frink

```/*    These algorithms reference Jean Meeus book _Astronomical Algorithms_    This program uses the full VSOP87 theory to calculate the exact dates    of the equinoxes and solstices to the nearest millisecond.  While the    sun.frink library has routines to calculate the solstices and equinoxes    rather simply, these can be inaccurate up to several minutes or so.    This program uses very high precision routines to calculate the solar    longitude of earth for each season, and uses a secant method solver to    obtain the exact time of the solstices and equinoxes to the nearest    millisecond.    The definition of the equinoxes and solstices are when earth's heliocentric    *longitude* is equal to 180 degrees (spring), 270 degrees (summer),    0 degrees (autumn), and 90 degrees (winter.)    The solstices are defined in terms of longitude, not latitude.  Thus, you    should be warned that the sun should be quite close to being over the    equator at equinoxes, and close to being at max/min latitude at solstices,    but these will not be exact.  Beware anyone who tells you differently. */ use planets.frink use secant.frink // Let's calculate the longitude angle that corresponds to 1 millisecond of // time angleres = ms circle/solaryear timezone = "US/Mountain" // Function to use planets.frink to calculate the heliocentric longitude // at the specified time. longfunc = {|date| highAccuracySunApparentLongitude[date]} for yearnum = 1996 to 2021 {    println[]    // These functions use the low-precision equinox/solstice functions from    // sun.frink to estimate a good starting point.  The low-accuracy guess is    // within 51 seconds for the years 1951-2050 (see Meeus table 27.D).    // We then use the secantInvert function to use the secant method to invert    // the higher-accuracy sun longitude function fron planets.frink using the    // full VSOP-87 theory.    // The sun longitude function gives the apparent longitude, given a    // date/time.  We invert this to find the date/time that the sun's apparent    // longitude matches a given value.    // We bound the guesses of the secant method to one hour before or after    // the initial guess.     springEquinox = secantInvertAngle[longfunc,                                 180 degrees,                                 springEquinox[yearnum] - 1 hour,                                 springEquinox[yearnum] + 1 hour,                                 angleres]    println["Spring equinox is:   " + (springEquinox -> timezone)]    summerSolstice = secantInvertAngle[longfunc,                                  270 degrees,                                  summerSolstice[yearnum] - 1 hour,                                  summerSolstice[yearnum] + 1 hour,                                  angleres]    println["Summer solstice is:  " + (summerSolstice -> timezone)]    autumnEquinox = secantInvertAngle[longfunc,                                 0 degrees,                                 autumnEquinox[yearnum] - 1 hour,                                 autumnEquinox[yearnum] + 1 hour,                                 angleres]    println["Autumn equinox is:   " + (autumnEquinox -> timezone)]    winterSolstice = secantInvertAngle[longfunc,                                  90 degrees,                                  winterSolstice[yearnum] - 1 hour,                                  winterSolstice[yearnum] + 1 hour,                                  angleres]    println["Winter solstice is:  " + (winterSolstice -> timezone)] } ```

This is a program written in the programming language Frink.
For more information, view the Frink Documentation or see More Sample Frink Programs.

Alan Eliasen was born 19093 days, 12 hours, 34 minutes ago.