eBinarySplitting.frink

Download or view eBinarySplitting.frink in plain text format


// Program to calculate e using binary splitting.  There is now a new library
// e.frink which allows resumable calculations and caching of e.  This program
// contains a simpler version of the algorithm for benchmarking and testing.
//
// See:
//    http://numbers.computation.free.fr/Constants/Algorithms/splitting.html
//    http://www.ginac.de/CLN/binsplit.pdf

digits = 10000

if length[ARGS] >= 1
   digits = eval[ARGS@0]

// Find number of terms to calculate.  ln[x!] = ln[1] + ln[2] + ... + ln[x]
k = 1
logFactorial = 0.
logMax = digits * ln[10]
while (logFactorial < logMax)
{
   logFactorial = logFactorial + ln[k];
   k = k + 1;
}

setPrecision[digits+3]

//println["k=$k"]
s1 = now[]
start = now[]
p = P[0,k]
q = Q[0,k]
end = now[]
println["Time spent in binary splitting: " + format[end-start, "s", 3]]

start = now[]
e = 1 + (1. * p)/q
end = now[]
println["Time spent in combining operations: " + format[end-start, "s", 3]]

//println[e]                      // Rational number
setPrecision[digits]

start = now[]
e = 1. * e
end = now[]
println["Time spent in floating-point conversion: " + format[end-start, "s", 3]]

start = now[]
es = toString[e]
end = now[]
println["Time spent in radix conversion: " + format[end-start, "s", 3]]

println[e]

e1 = now[]
println["Total time spent:  " + format[e1-s1, "s", 3]]
println[e]

P[a,b] :=
{
   if (b-a) == 1
      return 1
   
   m = (a+b) div 2
   r = P[a,m] Q[m,b] + P[m,b]
   return r
}

Q[a,b] :=
{
   if (b-a) == 1
      return b
   
   m = (a+b) div 2
   return Q[a,m] Q[m,b]
}


Download or view eBinarySplitting.frink in plain text format


This is a program written in the programming language Frink.
For more information, view the Frink Documentation or see More Sample Frink Programs.

Alan Eliasen was born 20117 days, 23 hours, 31 minutes ago.