# ZehnGray.frink

```// Solution to the "Zehn Grey" geocache (GCR49C) // // http://www.geocaching.com/seek/cache_details.aspx?guid=3e7679d6-ecd9-4947-b648-78fb0916a080 // Import the navigation.frink file which contains great circle calculations // and definitions for the navigation functions below. use navigation.frink // This file includes point-to-line distance formulas. use geometry.frink // We know that 1.) The cache is equidistant from the following two points: // Zehn Grey (GCR49C) points (P1) lat1 =   DMS[ 39, 58.475] North long1 =  DMS[105, 16.605] West // Boulder Orphan (GCGFMN) points (P2) lat2 =   DMS[ 39, 59.479] North long2 =  DMS[105, 16.389] West // We also know that "2.) A line containing this cache's coordinates and GCJ3A4 // is parallel with the line using the two points in (1)." // // We'll call the coordinates of the actual cache PC. // Vince's Royal (GCJ3A4) coordinates (P3) lat3 =   DMS[ 39, 59.474] North long3 =  DMS[105, 17.232] West /* Thus, we want to find the bearing from P3 to PC.  This is the same    as the bearing from P1 to P2 (or P2 to P1)    Actually, this is not quite true.  No two different great circles are ever    parallel!  I'll be curious to see how close this gets. */ bearing = earthBearing[lat1, long1, lat2, long2] println["Bearing from P1 to P2: " + format[bearing,"degrees", 5]] println["Bearing from P2 to P1: " + format[(bearing+180 degrees) mod circle,"degrees", 5]] // Because PC is equidistant from P1 and P2, this must be an isosceles // triangle. P1-P2-PC /* Now we need to find the midpoint between P1 and P2. */ d12 = earthDistance[lat1, long1, lat2, long2] println["Distance from P1 to P2: " + format[d12, "miles", 4]] // Half the distance hd12 = 1/2 d12 // Find the centerpoint [lat12, long12] = resultantLatLong[lat1, long1, hd12, bearing] println["Lat12:  " + (lat12 -> DM)] println["Long12: " + (long12 -> DM)] d = 0 feet shortestDist = 1000 km prevDist = 1000 km var shortlat var shortlong // Now do a sloppy linear search along a line from P3 to find the shortest // distance.  I'd like it if this were more elegant, but it works and is // a lot easier than solving the simultaneous spherical and ellipsoidal // equations.  do {    d = d - 1 feet    prevDist = shortestDist    [latc, longc] = resultantLatLong[lat3, long3, d, bearing]    dc1 = earthDistance[lat1, long1, latc, longc]    dc2 = earthDistance[lat2, long2, latc, longc]    currdist = abs[dc1-dc2]    if (currdist < shortestDist)    {       shortestDist = currdist       shortlat = latc       shortlong = longc    } } while (prevDist > shortestDist) println["\nShortest solution was found at: "] println[(latc->DM) + " " + latitudeName[latc] + ", " + (longc->DM) + " " + longitudeName[longc]] dc1 = earthDistance[lat1, long1, latc, longc] dc2 = earthDistance[lat2, long2, latc, longc] println["\nDouble check:"] // Double check; these should be close to each other. println["dc1 is " + format[dc1, "miles", 4]] println["dc2 is " + format[dc2, "miles", 4]] bcheck = earthBearing[lat3, long3, latc, longc] println["Bearing from P3 to PC: " + format[bcheck,"degrees", 5]] ```