# Rump.frink

``` // A test of math using an equation due to Rump and refined in "Global // Optimization Using Interval Analysis", Hansen and Walster, section // 1.4.1 f[x,y] := (333.75 - x^2) y^6 + x^2 (11x^2 y^2 - 121 y^4 - 2) + 5.5 y^8 + x/(2y) // This alternate version shows what happens if we don't use floating-point // numbers but exact rational numbers. f2[x,y] := ((333 + 3/4) - x^2) y^6 + x^2 (11x^2 y^2 - 121 y^4 - 2) + (5 + 1/2) y^8 + x/(2y) x=77617 y=33096 // Note that the equation simplifies to: // x / (2 y) - 2 setPrecision println["Correct answer should be:"] println[x/(2 y)-2.] // It appears that this doesn't work if precision is set below 37 digits, // then it works perfectly. println[x/(2 y)-2.] setPrecision println["\nFloating-point: " + f[x,y]] // Rational example: println["\nRational:       " + f2[x,y]] // Interval example: collapseIntervals[false] xi = new interval[x,x,x] yi = new interval[y,y,y] println["\nInterval:       " + f[xi,yi]] // Demonstration using Frink's symbolic solver use Solver.frink symbolicMode[true] // Rump equation r = new Solver[[z === ((333 + 3/4) - x^2) y^6 + x^2 (11x^2 y^2 - 121 y^4 - 2) + (5 + 1/2) y^8 + x/(2y),                 x===77617,                 y===33096]] println["\n\nSymbolic solution:"] println[join["\n",r.solveAll[]]] println[] ```