# EarthTemperature.frink

``` // Program to find earth's temperature if it did and didn't have greenhouse // gases, atmosphere, etc. // Tweakable parameters: // Assume albedo = 0 (perfectly black)? // Actual earth average albedo is about 0.30 (and varies with time.) // (This is the Bond albedo, not the geometric albedo.) albedo = 0.30 // Where earthEta is the emissivity of the earth.  For a blackbody this is 1, // for most materials, around 0.95, but for clouds it's about 0.5. // The actual effective emissivity of the earth (because of clouds,) is // measured to be about 0.612. // Setting the effective emissivity and the albedo to their measured values // gives a temperature very close to their actual values (average surface // temperature of the earth is usually given at 59 F) and takes into account // greenhouse gases and atmospheric effects. earthEta = .612 // Total power absorbed by the earth is equal to the fraction of the sun's // radiated power that strikes a circle with the earth's radius: earthReceivingArea = pi earthradius^2 // At the distance that the earth is from the sun, the sun's whole power is // spread over a sphere: sunSphere = 4 pi earthdist^2 // So the earth receives only: earthPower = sunpower * (earthReceivingArea/sunSphere) * (1-albedo) println["With an albedo of \$albedo"] println["And an emissivity of \$earthEta"] println["Earth receives " + (earthPower -> "watts")] // The earth's surface area: earthArea = 4 pi earthradius^2 //   I'll assume that the earth is a blackbody and radiates its energy into // another blackbody with a temperature of 2.725 K (the latest figure for the // cosmic background radiation; the effective temperature of our surrounding // neighborhood might be somewhat higher due to dust clouds, planets, distant // stars, that radiate back at us a little, but probably not *too* much.) Tu = 2.725 K //  A body radiates an amount of power equal to: //   sigma eta T^4 area // Where sigma is the Stefan-Boltzmann constant (Frink knows this) and eta is // the emissivity (which is 1 for a blackbody).  T is, of course, the // temperature.  We'll call the temperature of the earth Te and the temperature // of the universe Tu. // The area that we radiate over is the total surface area of the earth: earthArea =  4 pi earthradius^2 //  Thus, we reach equilibrium when the power radiated (out) by the earth is // equal to (the power radiated (in) by the universe plus the power radiated // (in) by the sun:) //   sigma earthEta Te^4 earthArea = sigma Tu^4 earthArea + earthPower // Rearranging to solve for Te, Te = ((earthPower + sigma earthArea Tu^4)/(sigma earthEta earthArea))^(1/4) println["Earth's average temperature is " + F[Te] + " F"] ```