/** This library contains routines to perform a best linear or other type of fit to a set of data points. This is often referred to as "regression" because of some historical accident. These functions are designed to preserve units of measure, to provide coefficients with correct units of measure, and to work for purely symbolic values! To use this file, see the examples in curveFitTest.frink Those examples are powerful and let you, say, derive the gravitic equation. Also see LeastSquares.frink and the test program LeastSquaresTest.frink which allow you to fit arbitrary linear systems to arbitrary basis functions. Also see the leastSquares function in Matrix.frink and the test program MatrixQRTest.frink which demonstrate linear least-squares fitting using QR decomposition which is general for a wide variety of linear systems with non-exact measurements. See: https://mathworld.wolfram.com/LeastSquaresFitting.html See also for special curve fits: TODO: Implement these. https://mathworld.wolfram.com/LeastSquaresFittingExponential.html https://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html https://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html */ /** Performs a best linear fit of the specified data points. In other words, this finds the coefficients a and b of a line (in slope-intercept form) with the equation: y = a x + b params: data: an array or set of [x,y] pairs. returns: [a, b, r] where r is the correlation coefficient */ linearFit[data] := { array = toArray[data] N = length[array] if N < 2 return [undef, undef, undef] // We do it this way to preserve units of measure by initializing the sum // with the first element. [x,y] = array@0 sxy = x y // Sum of x*y sx = x // Sum of x sy = y // Sum of y sx2 = x^2 // Sum of x^2 sy2 = y^2 // Sum of y^2 for i = 1 to N-1 { [x,y] = array@i sxy = sxy + x y sx = sx + x sy = sy + y sx2 = sx2 + x^2 sy2 = sy2 + y^2 } denom = N sx2 - sx^2 a = (N sxy - sx sy) / denom b = (sy sx2 - sx sxy) / denom // println["got here, denom=$denom"] // println["N=$N, sxy=$sxy, sx=$sx, sy=$sy"] // TODO: make these arbitrary-precision sqrt? That means we have to // fix arbitrary-precision sqrt so it takes units of measure. r = (N sxy - sx sy) / (sqrt[denom] sqrt[N sy2 - sy^2]) // println["Got past r"] return [a, b, r] } /** This performs a linear fit of the specified data as above, but instead of returning the coefficients, it returns a function representing the line, or, in other words, an anonymous function f that represents y = f[x] of the best-fit line, or in more Frink-like notation, the anonymous function looks like: {|x| a x + b } */ linearFitFunction[data] := { [a, b, r] = linearFit[data] return parseToExpression["{|x| (" + inputForm[a] + ") x + (" + inputForm[b] + ")}"] } /** This performs a linear fit of the specified data as above, but instead of returning the coefficients, it returns an expression representing the line with x as the unknown variable. For example, a x + b */ linearFitExpression[data] := { [a, b, r] = linearFit[data] return parseToExpression["(" + inputForm[a] + ") x + (" + inputForm[b] + ")"] } /** Performs a best quadratic fit of the specified data points. In other words, this finds the coefficients a,b,c of a quadratic equation, that is, the equation: y = a x^2 + b x + c params: data: an array or set of [x,y] pairs. returns: [a, b, c, r] where r is the correlation coefficient */ quadraticFit[data] := { array = toArray[data] N = length[array] if N < 3 return [undef, undef, undef, undef] // We do it this way to preserve units of measure by initializing the sum // with the first element. [x,y] = array@0 sx = x // Sum of x sy = y // Sum of y sxy = x y // Sum of x*y sx2 = x^2 // Sum of x^2 sx3 = x^3 // Sum of x^3 sx4 = x^4 // Sum of x^4 sy2 = y^2 // Sum of y^2 sx2y = x^2 y // Sum of x^2 * y for i = 1 to N-1 { [x,y] = array@i sxy = sxy + x y sx = sx + x sy = sy + y sx2 = sx2 + x^2 sx3 = sx3 + x^3 sx4 = sx4 + x^4 sy2 = sy2 + y^2 sx2y = sx2y + x^2 y } // These symbol changes make it more concise and match the symbols // in Jean Meeus, Astronomical Algorithms, 4.5 and 4.6 P = sx Q = sx2 R = sx3 S = sx4 T = sy U = sxy V = sx2y D = N Q S + 2 P Q R - Q^3 - P^2 S - N R^2 a = (N Q V + P R T + P Q U - Q^2 T - P^2 V - N R U) / D b = (N S U + P Q V + Q R T - Q^2 U - P S T - N R V) / D c = (Q S T + Q R U + P R V - Q^2 V - P S U - R^2 T) / D meany = sy / N [x,y] = array@0 SSE = (y - a x^2 - b x - c)^2 SST = (y - meany)^2 for i = 1 to N-1 { [x,y] = array@i SSE = SSE + (y - a x^2 - b x - c)^2 SST = SST + (y - meany)^2 } r = sqrt[1 - SSE/SST] return [a, b, c, r] } /** This performs a quadratic fit of the specified data as above, but instead of returning the coefficients, it returns an expression representing the fit with x as the unknown. For example: a x^2 + b x + c */ quadraticFitExpression[data] := { [a, b, c, r] = quadraticFit[data] return parseToExpression["(" + inputForm[a] + ") x^2 + (" + inputForm[b] + ") x + (" + inputForm[c] + ")"] } /** This performs a quadratic fit of the specified data as above, but instead of returning the coefficients, it returns a function representing the function, or, in other words, an anonymous function f that represents y = f[x] of the best-fit line, or in more Frink-like notation, the anonymous function looks like: {|x| a x^2 + b x + c } */ quadraticFitFunction[data] := { [a, b, c, r] = quadraticFit[data] return parseToExpression["{|x| (" + inputForm[a] + ") x^2 + (" + inputForm[b] + ") x + (" + inputForm[c] + ")}"] } /** Fit an exponential function of the form y = A e^(B x). See: https://mathworld.wolfram.com/LeastSquaresFittingExponential.html This uses the former fit on the page. It gives more weight to small y values. It was not originally clear how to make these equations have units of measure. Taking, say, the logarithm or the exp of anything but a dimensionless term makes no sense. The product (B x) must be dimensionless (to be able to take the exponential function) so the dimensions of B must be the dimensions of (1/x). Similarly, A and y must have the same dimensions. But to take ln[y] means that y *must* be dimensionless (which is unnecessary. It could have the same dimensions as A.) returns: [A, B] */ exponentialFit[data] := { [xa, ya] = unzip[data] len = length[xa] [x, xdim] = factorUnits[xa@0] [y, ydim] = factorUnits[ya@0] lny = ln[y] a1n = 0 y a2n = 0 x^2 a3n = 0 x a4n = 0 x lny for i=0 to len-1 { x = xa@i / xdim y = ya@i / ydim lny = ln[y] a1n = a1n + lny a2n = a2n + x^2 a3n = a3n + x a4n = a4n + x lny } denom = len a2n - a3n^2 a = (a1n a2n - a3n a4n) / denom b = (len a4n - a3n a1n) / denom return [exp[a] ydim, b / xdim] } /** This performs an exponential fit of the specified data as above, but instead of returning the coefficients, it returns an expression representing the fit with x as the unknown. A e^(B x) */ exponentialFitExpression[data] := { [A, B] = exponentialFit[data] return parseToExpression["(" + inputForm[A] + ") e^((" + inputForm[B] + ")*(" + inputForm[x] + "))"] } /** This performs an exponential fit of the specified data as above, but instead of returning the coefficients, it returns a function representing the function, or, in other words, an anonymous function f that represents y = f[x] of the best-fit line, or in more Frink-like notation, the anonymous function looks like: {|x| A e^(B x)} */ exponentialFitFunction[data] := { [A, B] = exponentialFit[data] return parseToExpression["{|x| (" + inputForm[A] + ") e^((" + inputForm[B] + ")*(" + inputForm[x] + "))}"] } /** Fit an exponential function of the form y = A e^(B x). See: https://mathworld.wolfram.com/LeastSquaresFittingExponential.html This uses the latter fit on the page. It gives more weight to higher y values. It was not originally clear how to make these equations have units of measure. Taking, say, the logarithm or the exp of anything but a dimensionless term makes no sense. The product (B x) must be dimensionless (to be able to take the exponential function) so the dimensions of B must be the dimensions of (1/x). Similarly, A and y must have the same dimensions. But to take ln[y] means that y *must* be dimensionless (which is unnecessary. It could have the same dimensions as A.) returns: [A, B] */ exponentialFit1[data] := { [xa, ya] = unzip[data] len = length[xa] [x, xdim] = factorUnits[xa@0] [y, ydim] = factorUnits[ya@0] lny = ln[y] a1n = 0 x^2y a2n = 0 y a3n = 0 x y a4n = 0 x y lny a1d = 0 y for i=0 to len-1 { x = xa@i / xdim y = ya@i / ydim lny = ln[y] a1n = a1n + x^2 y a2n = a2n + y lny a3n = a3n + x y a4n = a4n + x y lny a1d = a1d + y } denom = (a1d a1n - a3n^2) a = (a1n a2n - a3n a4n) / denom b = (a1d a4n - a3n a2n) / denom return [exp[a] ydim, b / xdim] } /** This performs an exponential fit of the specified data as above, but instead of returning the coefficients, it returns an expression representing the fit with x as the unknown. A e^(B x) */ exponentialFitExpression1[data] := { [A, B] = exponentialFit1[data] return parseToExpression["(" + inputForm[A] + ") e^((" + inputForm[B] + ")*(" + inputForm[x] + "))"] } /** This performs an exponential fit of the specified data as above, but instead of returning the coefficients, it returns a function representing the function, or, in other words, an anonymous function f that represents y = f[x] of the best-fit line, or in more Frink-like notation, the anonymous function looks like: {|x| A e^(B x)} */ exponentialFitFunction1[data] := { [A, B] = exponentialFit1[data] return parseToExpression["{|x| (" + inputForm[A] + ") e^((" + inputForm[B] + ")*(" + inputForm[x] + "))}"] } /** Calculates the r-value of the correlation between the yvalues and the fit function's predicted yvalues. See https://stats.libretexts.org/Bookshelves/Introductory_Statistics/OpenIntro_Statistics_(Diez_et_al)./07%3A_Introduction_to_Linear_Regression/7.02%3A_Line_Fitting_Residuals_and_Correlation */ rValue[function, data] := { [xvalues, yvalues] = unzip[data] ycalc = map[function, xvalues] len = length[yvalues] [meanx, sdx] = meanAndSD[yvalues, true] [meany, sdy] = meanAndSD[ycalc, true] //println["mean x: $meanx sdx: $sdx"] //println["mean y: $meany sdy: $sdy"] sum = undef // Make units come out right for i=rangeOf[yvalues] { term = ((yvalues@i - meanx) / sdx) * ((ycalc@i - meany) / sdy) if sum == undef sum = term else sum = sum + term } return sum / (len-1) } /** Attempts to optimize an exponential fit by breaking it into 2 piecewise segments each with different coefficients. returns [function, rValue] */ exponentialFitFunctionPiecewise[data, debug=false] := { sorted = sort[deepCopy[data], byColumn[0]] len = length[sorted] bestR = -1000 bestF = undef for cutBefore = 3 to len-3 { cutx = sorted@cutBefore@0 // x value after cut point data1 = first[sorted, cutBefore] data2 = rest[sorted, cutBefore] e1 = exponentialFitExpression[data1] e2 = exponentialFitExpression[data2] fs = "{|x| \n" + " if x < " + inputForm[cutx] + "\n" + " return " + inputForm[e1] + "\n" + " else\n" + " return " + inputForm[e2] + "\n" + "}" if debug println[fs] f = parseToExpression[fs] r = rValue[f, data] if debug print["r = $r "] if r > bestR { bestR = r bestF = f if debug println["*"] } if debug println["\n"] } return [bestF, bestR] } /** Attempts to optimize a quadratic fit by breaking it into 2 piecewise segments each with different coefficients. returns [function, rValue] */ quadraticFitFunctionPiecewise[data, debug=false] := { sorted = sort[deepCopy[data], byColumn[0]] len = length[sorted] bestR = -1000 bestF = undef for cutBefore = 3 to len-3 { cutx = sorted@cutBefore@0 // x value after cut point data1 = first[sorted, cutBefore] data2 = rest[sorted, cutBefore] e1 = quadraticFitExpression[data1] e2 = quadraticFitExpression[data2] fs = "{|x| \n" + " if x < " + inputForm[cutx] + "\n" + " return " + inputForm[e1] + "\n" + " else\n" + " return " + inputForm[e2] + "\n" + "}" if debug println[fs] f = parseToExpression[fs] r = rValue[f, data] if debug print["r = $r "] if r > bestR { bestR = r bestF = f if debug println["*"] } if debug println["\n"] } return [bestF, bestR] } /** Attempts to optimize a quadratic fit by breaking it into 3 piecewise segments each with different coefficients. returns [function, rValue] */ quadraticFitFunctionPiecewise3[data, debug=false] := { sorted = sort[deepCopy[data], byColumn[0]] len = length[sorted] bestR = -1000 bestF = undef for cutBefore1 = 3 to len-6 { cutx1 = sorted@cutBefore1@0 // x value after cut point1 data1 = slice[sorted, 0, cutBefore1] e1 = quadraticFitExpression[data1] for cutBefore2 = cutBefore1 + 3 to len-3 { data2 = slice[sorted, cutBefore1, cutBefore2] data3 = slice[sorted, cutBefore2, len] cutx2 = data3@0@0 // x value after cut point 2 e2 = quadraticFitExpression[data2] e3 = quadraticFitExpression[data3] fs = "{|x| \n" + " if x < " + inputForm[cutx1] + "\n" + " return " + inputForm[e1] + "\n" + " else\n" + " if x < " + inputForm[cutx2] + "\n" + " return " + inputForm[e2] + "\n" + " else\n" + " return " + inputForm[e3] + "\n" + "}" if debug println[fs] f = parseToExpression[fs] r = rValue[f, data] if debug print["r = $r "] if r > bestR { bestR = r bestF = f if debug println["*"] } if debug println["\n"] } } return [bestF, bestR] }